CHALLENGES AND STRATEGIES FOR DEVELOPING ROBUST AI APPLICATIONS IN ONCOLOGY

Daniel L. Rubin, MD, MS

Professor of Biomedical Data Science, Radiology, Medicine (Biomedical Informatics), Computer Science (courtesy) and Ophthalmology (courtesy)

Laboratory of Quantitative Imaging and AI

Stanford University

Image assessments of cancer lesions are the basis of evaluating treatment response

- Measurements are made on images
- Recorded as a separate process (spreadsheet, dictated report, etc)
- Disconnected from the image(s)

Problem: Inter-reader variation:

Sufficiency of information in 167 imaging studies and reports

<table>
<thead>
<tr>
<th>No of Observations</th>
<th>Baseline (55)</th>
<th>Follow-up (112)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesion Described</td>
<td>39 (71%)</td>
<td>43 (38%)</td>
</tr>
<tr>
<td>Longest Diameter</td>
<td>30 (55%)</td>
<td>31 (28%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Image Markup</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesion Identified</td>
<td>40 (73%)</td>
<td>78 (70%)</td>
</tr>
<tr>
<td>Longest Diameter</td>
<td>27 (50%)</td>
<td>29 (26%)</td>
</tr>
</tbody>
</table>

Radiologist not aware of measurable disease being tracked by oncologists

Opportunities for AI in cancer imaging

- Lesion detection
- Lesion segmentation
- Diagnosis
- Treatment selection
- Response assessment
- Clinical prediction (of treatment response or future disease)

Critical for Drug Evaluation

Active research area

Acknowledgements

Students, Post-docs, Residents, Staff, and Collaborators

- Bao Do
- Christopher Re
- Sandy Napel
- Chris Beaulieu
- Ozge Yurtsever
- Darvin Yi
- Anuj Pareek
- Jared Dunnmon
- Anuj Pareek
- Siyi Tang
- Maha Alkim
- David Liang
- Niranjan Balasubramanian
- Emel Akkim
- Michael Gensheimer
- Nandita Bhaskar
- Ted Leng
- Joelle Hallak
- Luis de Sisternes
- Ozge Yurtsever
- Bede Do
- Sandy Napel
- Chris Beaulieu
- Ami Leung
- Naras Balasubramanian
- Chris Beaulieu
- Ann Leung
- Phil Lavori
- Jarred Dunnmon
- Mete Akdogan
- Anna Leung
- Christopher Re
- Sandy Napel
- Chris Beaulieu

Funding Support

- NCI grants:
 - U01CA142555
 - 1U01CA190214
 - 1U01CA187947
 - 1U01CA242879
- NVIDIA Academic Hardware Grant Program

- Stanford Philips and GE BlueSky

Lesion measurements are basis of patient response and cohort treatment efficacy

Sum of Maximum Lesion Diameters Over Time

Problem:

These analyses are currently hand-generated in a cumbersome, error-prone workflow, subject to inter-reader variation.

Image assessments of cancer lesions are the basis of evaluating treatment response

Measurements are made on images

Recorded as a separate process (spreadsheet, dictated report, etc)

Disconnected from the image(s)

No of Observations

<table>
<thead>
<tr>
<th>Baseline (55)</th>
<th>Follow-up (112)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39 (71%)</td>
<td>43 (38%)</td>
</tr>
<tr>
<td>30 (55%)</td>
<td>31 (28%)</td>
</tr>
<tr>
<td>40 (73%)</td>
<td>78 (70%)</td>
</tr>
<tr>
<td>27 (50%)</td>
<td>29 (26%)</td>
</tr>
</tbody>
</table>

Opportunities for AI in cancer imaging

- Lesion detection
- Lesion segmentation
- Diagnosis
- Treatment selection
- Response assessment
- Clinical prediction (of treatment response or future disease)

Copyright © Daniel Rubin 2019
Detection and segmentation: General fully connected networks

Detection/segmentation are pixel-based classification tasks

There are challenges to building robust AI models

- Data among institutions varies
 - Geographic variations in patient populations
 - Differences in imaging parameters
 - Differences in vendor equipment
- Robust AI models require **large amounts of labeled training** data in order to generalize
- Difficult/costly to acquire large amounts of data
- There are tremendous amounts of historical data across institutions that could be leveraged

AI development (and data) is siloed

Overcoming barriers to data sharing

- **Bring the model to the data** instead of bringing the data (centralized) to the model
- **Distributed computation** of training deep learning models ("distributed learning")
Alternative models for training distributed deep learning models

<table>
<thead>
<tr>
<th>A</th>
<th>Centrally hosted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institution 1</td>
<td></td>
</tr>
<tr>
<td>Institution 2</td>
<td></td>
</tr>
<tr>
<td>Institution 3</td>
<td></td>
</tr>
<tr>
<td>Institution 4</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Ensemble single institution</td>
</tr>
<tr>
<td>Institution 1</td>
<td></td>
</tr>
<tr>
<td>Institution 2</td>
<td></td>
</tr>
<tr>
<td>Institution 3</td>
<td></td>
</tr>
<tr>
<td>Institution 4</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Single weight transfer</td>
</tr>
<tr>
<td>Institution 1</td>
<td></td>
</tr>
<tr>
<td>Institution 3</td>
<td></td>
</tr>
<tr>
<td>Institution 4</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Cyclic weight transfer (CWT)</td>
</tr>
<tr>
<td>Institution 1</td>
<td></td>
</tr>
<tr>
<td>Institution 3</td>
<td></td>
</tr>
<tr>
<td>Institution 4</td>
<td></td>
</tr>
</tbody>
</table>

CWT has similar performance to centrally-hosted training

![Graph showing comparison between Centrally Hosted and CWT](chart)

Results based on having 4 institutions

Challenges to making distributed learning work

Distributed model performance may be inferior to centrally hosted performance

- **Heterogeneity in data** across institutions
 - Different patient populations (sample sizes, label distribution)
 - Differences in manifestation of disease
 - Different scanning hardware/parameters
 - Differences in image resolution
 - Differences in image quality
- **Differences in computing hardware** (GPU/CPU) among institutions
- **Differences in network bandwidth** among institutions

Variability in sample size and label distribution (NIH Chest X-ray dataset)

- 4 institutions, GoogleNet for classification
- Each point is average across 10 runs
- We generate various institution splits such that there are different levels of variance in sample size and label distribution

Overcoming challenges of variability in data (NIH Chest X-ray dataset)

- 4 institutions, GoogleNet for classification
- Each point is average across 10 runs
- We generate various institution splits such that there are different levels of variance in sample size and label distribution

Importance of sample size

- **Centrally hosted data**
 - 6000 patients
 - Each site has 300 cases
 - Accuracy increases with number of collaborating institutions—amount of data (each site has 300 cases)

Copyright © 2019 Daniel L. Rubin
The future: A collaborative AI ecosystem

• Each site specifies a dataset they wish to make available for building AI
• “Pop-up” collaborations to build AI models using distributed learning
• Full control over data and data use

Summary

• We need AI in cancer imaging to reduce variations in assessment of lesions
• Key AI methods are automated lesion detection and segmentation
• Building robust AI models requires much data
• Data from multiple institutions can be leveraged through distributed learning
 — Heterogeneities among sites is a challenge
 — Optimizations in distributed computational approaches can overcome challenges

Thank you.

Contact info:
dlrubin@stanford.edu